Systèmes entrée-sortie non linéaires et applications en audio-acoustique

Séries de Volterra

Thomas Hélie, CNRS

Equipe S3AM (http://s3am.ircam.fr) Laboratoire des Sciences et Technologies de la Musique et du Son IRCAM - CNRS - SU, Paris, France

Ecole Thématique "Théorie du Contrôle en Mécanique" 2019

- 2 Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel
- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

- 2 Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ 三 ○ ○ ○ ○ 3/43

- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

2 Séries de Volterra : généralités

3 Calcul des noyaux de Volterra d'un système différentiel

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○ 4/43

- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

- 2 Séries de Volterra : généralités
- Calcul des noyaux de Volterra d'un système différentiel

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○ 5/43

- 4 Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

- 2 Séries de Volterra : généralités
- Calcul des noyaux de Volterra d'un système différentiel

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○ 6/43

Exercices et applications en audio-acoustique

5 Convergence

Extension en dimension infinie et application

Plan

- 2) Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ = ● の € 7/43

Exercices et applications en audio-acoustique

5 Convergence

- Standard result (recall)
- Theoretical computable result
- 6 Extension en dimension infinie et application

Outline

- 2) Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel
- Exercices et applications en audio-acoustique

5 Convergence

- Standard result (recall)
- Theoretical computable result
- 6 Extension en dimension infinie et application

Recall: definition of a Volterra series

$$\mathbf{x}(t) = \sum_{n=1}^{+\infty} \mathbf{x}_n(t) \text{ with } \mathbf{x}_n(t) = \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t-\tau_1) ... u(t-\tau_n) d\tau_1 ... d\tau_n$$

Bounded Input Bounded Output (BIBO) result $(||u||_{\infty} = \sup_{t \in \mathbb{R}} |u(t)|)$

$$\begin{aligned} |\mathbf{x}_{n}(t)| &= \left| \int_{\mathbb{R}^{n}} h_{n}(\tau_{1},...,\tau_{n}) u(t-\tau_{1})...u(t-\tau_{n}) d\tau_{1}...d\tau_{n} \right| \\ &\leq \int_{\mathbb{R}^{n}} \left| h_{n}(\tau_{1},...,\tau_{n}) \right| \underbrace{|u(t-\tau_{1})| \dots |u(t-\tau_{n})|}_{\leq ||u||_{\infty} \dots ||u||_{\infty}} d\tau_{1}...d\tau_{n} \\ \\ ||\mathbf{x}_{n}||_{\infty} &\leq \underbrace{\int_{\mathbb{R}^{n}} \left| h_{n}(\tau_{1},...,\tau_{n}) \right| d\tau_{1}...d\tau_{n}}_{= ||h_{n}||_{1}} \underbrace{(L^{1}-\operatorname{norm})}_{(L^{1}-\operatorname{norm})} \end{aligned}$$

Hence,
$$\|x\|_{\infty} \leq \sum_{n=1}^{+\infty} \|x_n\|_{\infty} \leq \sum_{n=1}^{+\infty} \|h_n\|_1 (\|u\|_{\infty})^n.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall: standard result (2/2)

(see e.g. [Boyd,1984])

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ - のへで 10/43

Gain bound function φ

Define $\varphi(z) = \sum_{n \ge 1} \|h_n\|_1 z^n$ with convergence radius ρ at z = 0.

Theorem (BIBO result)

If $||u||_{\infty} < \rho$, then the Volterra series expansion of *x* is normally convergent and

 $\|\mathbf{X}\|_{\infty} \leq \boldsymbol{\varphi}(\|\mathbf{U}\|_{\infty}) < +\infty.$

Moreover, the truncation error is bounded:

$$\left\|\sum_{n=N+1}^{+\infty} x_n\right\|_{\infty} \leq \sum_{n=N+1}^{+\infty} \|h_n\|_1 \left(\|u\|_{\infty}\right)^n$$

QUESTION

Can we use these theoretical results in practice?

Application test on $\dot{x} + ax - \varepsilon x^3 = u$ (a > 0, ε > 0)

Using interconnection laws in the Laplace domain:

Application test on $\dot{x} + ax - \varepsilon x^3 = u$ (a > 0, ε > 0)

Using interconnection laws in the Laplace domain:

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ 11/43

$$(\widehat{\boldsymbol{s}_{1:n}} + \boldsymbol{a}) H_n(\boldsymbol{s}_{1:n})$$

Application test on $\dot{x} + ax - \varepsilon x^3 = u$ (a > 0, ε > 0) Using interconnection laws in the Laplace domain:

$$(s_{1:n}+a)H_n(s_{1:n})-\varepsilon\sum_{q_1+q_2+q_3=n}H_{q_1}(s_{1:q_1})H_{q_2}(s_{q_1+1:q_1+q_2})H_{q_3}(s_{q_1+q_2+1:n})$$

Application test on $\dot{x} + ax - \varepsilon x^3 = u$ (*a* > 0, ε > 0) Using interconnection laws in the Laplace domain:

$$(\widehat{s_{1:n}} + a)H_n(s_{1:n}) - \varepsilon \sum_{q_1+q_2+q_3=n} H_{q_1}(s_{1:q_1})H_{q_2}(s_{q_1+1:q_1+q_2})H_{q_3}(s_{q_1+q_2+1:n}) = \delta_{1,n}$$

Application test on $\dot{x} + ax - \varepsilon x^3 = u$ (*a* > 0, ε > 0) Using interconnection laws in the Laplace domain:

$$(\widehat{s_{1:n}} + a)H_n(s_{1:n}) - \varepsilon \sum_{q_1+q_2+q_3=n} H_{q_1}(s_{1:q_1})H_{q_2}(s_{q_1+1:q_1+q_2})H_{q_3}(s_{q_1+q_2+1:n}) = \delta_{1,n}$$

 $H_1(s_1) = (s_1 + a)^{-1}$ (one-pole filter), $H_2(s_{1:2}) = 0$, Application test on $\dot{x} + ax - \varepsilon x^3 = U$ ($a > 0, \varepsilon > 0$) Using interconnection laws in the Laplace domain: $(\widehat{s_{1:n}} + a)H_n(s_{1:n}) - \varepsilon \sum_{q_1+q_2+q_3=n} H_{q_1}(s_{1:q_1})H_{q_2}(s_{q_1+1:q_1+q_2})H_{q_3}(s_{q_1+q_2+1:n}) = \delta_{1,n}$ $H_1(s_1) = (s_1 + a)^{-1}$ (one-pole filter), $H_2(s_{1:2}) = 0,$ $H_3(s_{1:3}) = \varepsilon H_1(s_1)H_1(s_2)H_1(s_3)H_1(s_1+s_2+s_3),$ $H_4(s_{1:4}) = 0,$

Application test on $\dot{x} + ax - \varepsilon x^3 = u$ $(a > 0, \varepsilon > 0)$ Using interconnection laws in the Laplace domain: $(\widehat{s_{1:n}} + a)H_n(s_{1:n}) - \varepsilon \sum H_{q_1}(s_{1:q_1})H_{q_2}(s_{q_1+1:q_1+q_2})H_{q_3}(s_{q_1+q_2+1:n}) = \delta_{1,n}$ $a_1 + a_2 + a_3 = n$ $H_1(s_1) = (s_1 + a)^{-1}$ (one-pole filter), $H_2(s_{1,2}) = 0,$ $H_3(s_{1,3}) = \varepsilon H_1(s_1) H_1(s_2) H_1(s_3) H_1(s_1 + s_2 + s_3),$ $H_4(s_{1\cdot 4}) = 0,$ $H_5(s_{1:5}) = \varepsilon H_1(s_1) H_1(s_2) H_3(s_{3:5}) + H_1(s_1) H_3(s_{2:4}) H_1(s_5)$ $+H_3(s_{1:3})H_1(s_4)H_1(s_5)H_1(s_1+...+s_5),$ etc.

Application test on $\dot{x} + ax - \epsilon x^3 = u$ $(a > 0, \varepsilon > 0)$ Using interconnection laws in the Laplace domain: $(\widehat{s_{1:n}} + a)H_n(s_{1:n}) - \varepsilon \sum H_{q_1}(s_{1:q_1})H_{q_2}(s_{q_1+1:q_1+q_2})H_{q_3}(s_{q_1+q_2+1:n}) = \delta_{1,n}$ $a_1 + a_2 + a_3 = n$ $H_1(s_1) = (s_1 + a)^{-1}$ (one-pole filter), $H_2(s_{1,2}) = 0,$ $H_3(s_{1,3}) = \varepsilon H_1(s_1) H_1(s_2) H_1(s_3) H_1(s_1+s_2+s_3),$ $H_4(s_{1,4}) = 0,$ $H_5(s_{1:5}) = \varepsilon H_1(s_1) H_1(s_2) H_3(s_{3:5}) + H_1(s_1) H_3(s_{2:4}) H_1(s_5)$ $+H_{3}(s_{1:3})H_{1}(s_{4})H_{1}(s_{5})H_{1}(s_{1}+...+s_{5}),$ etc.

(Formula with convolutions are also available in the time-domain)

Application test on $\dot{x} + ax - \epsilon x^3 = u$ $(a > 0, \varepsilon > 0)$ Using interconnection laws in the Laplace domain: $(\widehat{s_{1:n}} + a)H_n(s_{1:n}) - \varepsilon \sum H_{q_1}(s_{1:q_1})H_{q_2}(s_{q_1+1:q_1+q_2})H_{q_3}(s_{q_1+q_2+1:n}) = \delta_{1,n}$ $a_1 + a_2 + a_3 = n$ $H_1(s_1) = (s_1 + a)^{-1}$ (one-pole filter), $H_2(s_{1,2}) = 0,$ $H_3(s_{1,3}) = \varepsilon H_1(s_1) H_1(s_2) H_1(s_3) H_1(s_1 + s_2 + s_3),$ $H_4(s_{1,4}) = 0,$ $H_5(s_{1:5}) = \epsilon H_1(s_1) H_1(s_2) H_3(s_{3:5}) + H_1(s_1) H_3(s_{2:4}) H_1(s_5)$ $+H_{3}(s_{1:3})H_{1}(s_{4})H_{1}(s_{5})H_{1}(s_{1}+...+s_{5}),$ etc.

(Formula with convolutions are also available in the time-domain)

Even for this basic example...

Computing $||h_n||_1$ is difficult in practice because of the rapidly increasing number of terms !

Outline

- 2 Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 12/43

Exercices et applications en audio-acoustique

5 Convergence

- Standard result (recall)
- Theoretical computable result
- 6 Extension en dimension infinie et application

(input) $\mathscr{U} = L^{\infty}(\mathbb{T}, \mathbb{U})$ with $\mathbb{U} = \mathbb{R}^{q}$ (or a Banach space) (state) $\mathscr{X} = L^{\infty}(\mathbb{T}, \mathbb{X})$ with $\mathbb{X} = \mathbb{R}^{p}$ (idem)

(input) $\mathscr{U} = L^{\infty}(\mathbb{T}, \mathbb{U})$ with $\mathbb{U} = \mathbb{R}^{q}$ (or a Banach space) (state) $\mathscr{X} = L^{\infty}(\mathbb{T}, \mathbb{X})$ with $\mathbb{X} = \mathbb{R}^{p}$ (idem)

Operators spaces

• $\mathscr{L}(\mathbb{U},\mathbb{X}), \, \mathscr{L}(\mathbb{X})$: bounded linear op. on $\mathbb{U} \to \mathbb{X}$ or $\mathbb{X} \to \mathbb{X}$

• $\mathscr{ML}_m(\mathbb{X})$: bounded multilinear op. on $\mathbb{X} \times \cdots \times \mathbb{X} \to \mathbb{X}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 13/43

with norm
$$||E|| = \sup_{\substack{(x_1,...,x_m) \in \mathbb{X}^m \\ ||x_1||=\cdots=||x_m||=1}} ||E(x_1,...,x_k)||_{\mathbb{X}} m \ge 2$$

(input) $\mathscr{U} = L^{\infty}(\mathbb{T}, \mathbb{U})$ with $\mathbb{U} = \mathbb{R}^{q}$ (or a Banach space) (state) $\mathscr{X} = L^{\infty}(\mathbb{T}, \mathbb{X})$ with $\mathbb{X} = \mathbb{R}^{p}$ (idem)

Operators spaces

• $\mathscr{L}(\mathbb{U},\mathbb{X}), \, \mathscr{L}(\mathbb{X})$: bounded linear op. on $\mathbb{U} \to \mathbb{X}$ or $\mathbb{X} \to \mathbb{X}$

• $\mathscr{ML}_m(\mathbb{X})$: bounded multilinear op. on $\mathbb{X} \times \cdots \times \mathbb{X} \to \mathbb{X}$

with norm
$$||E|| = \sup_{\substack{(x_1,...,x_m) \in \mathbb{X}^m \\ ||x_1||=\cdots=||x_m||=1}} ||E(x_1,...,x_k)||_{\mathbb{X}} ||E||_{\mathbb{X}}$$

Class of systems

$$\dot{x} = Ax + Bu + \sum_{m=2}^{M} A_m(\underline{x, ..., x}), \text{ for } t \in \mathbb{T} \text{ with } x(0) = 0$$
$$A \in \mathscr{L}(\mathbb{X}) \ (\equiv p \times p \text{ matrix}), B \in \mathscr{L}(\mathbb{U}, \mathbb{X}) \ (\equiv p \times q), A_m \in \mathscr{ML}_m(\mathbb{X})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 13/43

(input) $\mathscr{U} = L^{\infty}(\mathbb{T}, \mathbb{U})$ with $\mathbb{U} = \mathbb{R}^{q}$ (or a Banach space) (state) $\mathscr{X} = L^{\infty}(\mathbb{T}, \mathbb{X})$ with $\mathbb{X} = \mathbb{R}^{p}$ (idem)

Operators spaces

• $\mathscr{L}(\mathbb{U},\mathbb{X}), \, \mathscr{L}(\mathbb{X})$: bounded linear op. on $\mathbb{U} \to \mathbb{X}$ or $\mathbb{X} \to \mathbb{X}$

• $\mathscr{ML}_m(\mathbb{X})$: bounded multilinear op. on $\mathbb{X} \times \cdots \times \mathbb{X} \to \mathbb{X}$

with norm
$$||E|| = \sup_{\substack{(x_1,...,x_m) \in \mathbb{X}^m \\ ||x_1||=\cdots=||x_m||=1}} ||E(x_1,...,x_k)||_{\mathbb{X}} |m \ge 2$$

Class of systems

$$\dot{x} = Ax + Bu + \sum_{m=2}^{M} A_m(\underline{x, ..., x}), \text{ for } t \in \mathbb{T} \text{ with } x(0) = 0$$

$$A \in \mathscr{L}(\mathbb{X}) \ (\equiv p \times p \text{ matrix}), B \in \mathscr{L}(\mathbb{U}, \mathbb{X}) \ (\equiv p \times q), A_m \in \mathscr{ML}_m(\mathbb{X})$$
Example $(\dot{x} = -ax + u + \varepsilon x^3, a > 0, \varepsilon > 0)$

$$A = -a, B = 1, A_0(\underline{x}, \underline{x}_0, \underline{x}_0) = \varepsilon \underline{x}_1 \underline{x}_0 \underline{x}_0, and ||A_0|| \underline{x}_0 \underline{x}_0 = \varepsilon$$

(input) $\mathscr{U} = L^{\infty}(\mathbb{T}, \mathbb{U})$ with $\mathbb{U} = \mathbb{R}^{q}$ (or a Banach space) (state) $\mathscr{X} = L^{\infty}(\mathbb{T}, \mathbb{X})$ with $\mathbb{X} = \mathbb{R}^{p}$ (idem)

Operators spaces

• $\mathscr{L}(\mathbb{U},\mathbb{X}), \, \mathscr{L}(\mathbb{X})$: bounded linear op. on $\mathbb{U} \to \mathbb{X}$ or $\mathbb{X} \to \mathbb{X}$

• $\mathscr{ML}_m(\mathbb{X})$: bounded multilinear op. on $\mathbb{X} \times \cdots \times \mathbb{X} \to \mathbb{X}$

with norm
$$||E|| = \sup_{\substack{(x_1,...,x_m) \in \mathbb{X}^m \\ ||x_1||=\cdots=||x_m||=1}} ||E(x_1,...,x_k)||_{\mathbb{X}} |m \ge 2$$

Class of systems

$$\dot{x} = Ax + Bu + \sum_{m=2}^{M} A_m(\underline{x, ..., x}), \text{ for } t \in \mathbb{T} \text{ with } x(0) = 0$$
$$A \in \mathscr{L}(\mathbb{X}) \ (\equiv p \times p \text{ matrix}), B \in \mathscr{L}(\mathbb{U}, \mathbb{X}) \ (\equiv p \times q), A_m \in \mathscr{ML}_m(\mathbb{X})$$

Rk: Solution of $\dot{x} = Ax + v$, x(0) = 0: $x(t) = \int_0^t S(\tau)v(t-\tau) d\tau$ with $S(t) = e^{At} \mathbf{1}_{\mathbb{R}_+}(t)$ (or C^0 semi-group [Curtain,Zwart,1995])

Hyp.:	(i)	$\exists \alpha \in \mathbb{R}, \beta > 0 \text{ s.t. } \forall t \in \mathbb{T}, \ \mathbf{S}(t) \ _{\mathscr{L}(\mathbb{X})} \leq \beta e^{\alpha t}$
	(ii)	if $\mathbb{T} = \mathbb{R}_+$, $\alpha < 0$ (matrix <i>A</i> is Hurwitz)

(input) $\mathscr{U} = L^{\infty}(\mathbb{T}, \mathbb{U})$ with $\mathbb{U} = \mathbb{R}^{q}$ (or a Banach space) (state) $\mathscr{X} = L^{\infty}(\mathbb{T}, \mathbb{X})$ with $\mathbb{X} = \mathbb{R}^{p}$ (idem)

Operators spaces

• $\mathscr{L}(\mathbb{U},\mathbb{X}), \, \mathscr{L}(\mathbb{X})$: bounded linear op. on $\mathbb{U} \to \mathbb{X}$ or $\mathbb{X} \to \mathbb{X}$

• $\mathscr{ML}_m(\mathbb{X})$: bounded multilinear op. on $\mathbb{X} \times \cdots \times \mathbb{X} \to \mathbb{X}$

with norm
$$||E|| = \sup_{\substack{(x_1,...,x_m) \in \mathbb{X}^m \\ ||x_1||=\cdots=||x_m||=1}} ||E(x_1,...,x_k)||_{\mathbb{X}} ||E||_{\mathbb{X}}$$

Class of systems

$$\dot{x} = Ax + Bu + \sum_{m=2}^{M} A_m(\underbrace{x, ..., x}_{m}), \text{ for } t \in \mathbb{T} \text{ with } x(0) = 0$$
$$A \in \mathscr{L}(\mathbb{X}) \ (\equiv p \times p \text{ matrix}), B \in \mathscr{L}(\mathbb{U}, \mathbb{X}) \ (\equiv p \times q), A_m \in \mathscr{ML}_m(\mathbb{X})$$

Example ($\dot{x} = -ax + u + \varepsilon x^3$, $a > 0, \varepsilon > 0$)

 $\begin{array}{l} A = -a, \ B = 1, \ A_3(x_1, x_2, x_3) = \varepsilon \, x_1 \, x_2 \, x_3 \quad \text{and} \ \|A_3\|_{\mathscr{ML}} = \varepsilon \\ S(t) = h_1(t) = e^{-at} \mathbf{1}_{\mathbb{R}_+}(t), \quad \alpha = -a < 0 \quad \text{and} \ \beta = 1 \end{array}$

(Back to the) time-domain Volterra series expansion Applying the perturbation method *(recall the preambule)* The series expansion of the trajectories is $x(t) = \sum_{n=1}^{+\infty} x_n(t)$ where x_n is solution of $\dot{x}_n = Ax_n + \chi_n, \quad x_n(0) = 0$ max(M,n)with $\chi_1(t) = Bu(t)$ and $\chi_{n\geq 2}(t) = \sum A_k(x_{p_1}(t), \dots, x_{p_k}(t))$ $k=2 \quad p \in \mathbb{M}^k$ and $\mathbb{M}_n^K = \left\{ p \in (\mathbb{N}^*)^K \mid p_1 + \dots + p_K = n \right\}$ Solution: convolution by the semi-group S

For all $n \ge 1$ and $t \in \mathbb{T}$, $x_n(t) = \int_0^t S(\tau) \chi_n(t-\tau) d\tau$

Example $(\dot{x} = -ax + u + \varepsilon x^3, a > 0, \varepsilon > 0)$ $x_1(t) = \int_0^t e^{-a\tau} u(t-\tau) d\tau$ (even oders are zero) $x_{n\geq 3}(t) = \int_0^t e^{-a\tau} \left(\sum_{p\in\mathbb{M}_n^3} \varepsilon x_{p_1}(t-\tau) x_{p_2}(t-\tau) x_{p_3}(t-\tau) \right) d\tau$

14/43

Definition (function *F***)**

Let $\gamma = \int_{\mathbb{T}} \|S(t)\|_{\mathscr{L}(\mathbb{X})} dt$ Define $F(X) = \frac{X}{X - \gamma Q(X)}$

$$(= \|S\|_{\mathbb{S}} \text{ with } \mathbb{S} = L^{1}(\mathbb{T}, \mathscr{L}(\mathbb{X})))$$

where $Q(X) = \sum_{m=2}^{M} \|A_{m}\|_{\mathscr{ML}} X^{m}$

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ へ ○ 15/43

Definition (function *F***)**

Let
$$\gamma = \int_{\mathbb{T}} \|S(t)\|_{\mathscr{L}(\mathbb{X})} dt$$
 $(=\|S\|_{\mathbb{S}} \text{ with } \mathbb{S} = L^{1}(\mathbb{T}, \mathscr{L}(\mathbb{X})))$
Define $F(X) = \frac{X}{X - \gamma Q(X)}$ where $Q(X) = \sum_{m=2}^{M} \|A_{m}\|_{\mathscr{ML}} X^{m}$

Theorem 1 (convergence domain and bound)

(i) There exists a unique $\sigma > 0$ s.t. $F(\sigma) - \sigma F'(\sigma) = 0$

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ へ ○ 15/43

Definition (function *F*)

Let
$$\gamma = \int_{\mathbb{T}} \|S(t)\|_{\mathscr{L}(\mathbb{X})} dt$$
 $(=\|S\|_{\mathbb{S}} \text{ with } \mathbb{S} = L^{1}(\mathbb{T}, \mathscr{L}(\mathbb{X})))$
Define $F(X) = \frac{X}{X - \gamma Q(X)}$ where $Q(X) = \sum_{m=2}^{M} \|A_{m}\|_{\mathscr{ML}} X^{m}$

Theorem 1 (convergence domain and bound)

- (i) There exists a unique $\sigma > 0$ s.t. $F(\sigma) \sigma F'(\sigma) = 0$
- (ii) There exists a unique function $\Psi(z) = \sum_{n \ge 1} \psi_n z^n$ analytic at z = 0 s.t. $\Psi(z) = z F(\Psi(z))$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - のへで 15/43

Definition (function *F***)**

Let
$$\gamma = \int_{\mathbb{T}} \|S(t)\|_{\mathscr{L}(\mathbb{X})} dt$$
 $(=\|S\|_{\mathbb{S}} \text{ with } \mathbb{S} = L^{1}(\mathbb{T}, \mathscr{L}(\mathbb{X})))$
Define $F(X) = \frac{X}{X - \gamma Q(X)}$ where $Q(X) = \sum_{m=2}^{M} \|A_{m}\|_{\mathscr{ML}} X^{m}$

Theorem 1 (convergence domain and bound)

- (i) There exists a unique $\sigma > 0$ s.t. $F(\sigma) \sigma F'(\sigma) = 0$
- (ii) There exists a unique function $\Psi(z) = \sum_{n \ge 1} \psi_n z^n$ analytic at z = 0 s.t. $\Psi(z) = z F(\Psi(z))$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - のへで 15/43

(iii) The convergence radius of Ψ is $\rho^{\star} = \frac{\sigma}{F(\sigma)} > 0$

Definition (function *F***)**

Let
$$\gamma = \int_{\mathbb{T}} \|S(t)\|_{\mathscr{L}(\mathbb{X})} dt$$
 $(=\|S\|_{\mathbb{S}} \text{ with } \mathbb{S} = L^{1}(\mathbb{T}, \mathscr{L}(\mathbb{X})))$
Define $F(X) = \frac{X}{X - \gamma Q(X)}$ where $Q(X) = \sum_{m=2}^{M} \|A_{m}\|_{\mathscr{ML}} X^{m}$

Theorem 1 (convergence domain and bound)

- (i) There exists a unique $\sigma > 0$ s.t. $F(\sigma) \sigma F'(\sigma) = 0$
- (ii) There exists a unique function $\Psi(z) = \sum_{n \ge 1} \psi_n z^n$ analytic at z = 0 s.t. $\Psi(z) = z F(\Psi(z))$
- (iii) The convergence radius of Ψ is $\rho^* = \frac{\sigma}{F(\sigma)} > 0$
- (iv) If $||x_1||_{\mathscr{X}} < \rho^*$, the series $x = \sum_{n \ge 1} x_n$ converges in norm in \mathscr{X} and $||x||_{\mathscr{X}} \le \Psi(||x_1||_{\mathscr{X}}) < +\infty$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - のへで 15/43

Definition (function *F***)**

Let
$$\gamma = \int_{\mathbb{T}} \|S(t)\|_{\mathscr{L}(\mathbb{X})} dt$$
 $(=\|S\|_{\mathbb{S}} \text{ with } \mathbb{S} = L^{1}(\mathbb{T}, \mathscr{L}(\mathbb{X})))$
Define $F(X) = \frac{X}{X - \gamma Q(X)}$ where $Q(X) = \sum_{m=2}^{M} \|A_{m}\|_{\mathscr{ML}} X^{m}$

Theorem 1 (convergence domain and bound)

- (i) There exists a unique $\sigma > 0$ s.t. $F(\sigma) \sigma F'(\sigma) = 0$
- (ii) There exists a unique function $\Psi(z) = \sum_{n \ge 1} \psi_n z^n$ analytic at z = 0 s.t. $\Psi(z) = z F(\Psi(z))$
- (iii) The convergence radius of Ψ is $\rho^* = \frac{\sigma}{F(\sigma)} > 0$
- (iv) If $||x_1||_{\mathscr{X}} < \rho^*$, the series $x = \sum_{n \ge 1} x_n$ converges in norm in \mathscr{X} and $||x||_{\mathscr{X}} \le \Psi(||x_1||_{\mathscr{X}}) < +\infty$

Corollary

Denote $v = ||t \mapsto S(t)B||_{L^1(\mathbb{T} \mathscr{L}(\mathbb{T} \mathbb{X}))}$

Let $\rho_u = \rho^* / v$. If $||u||_{\mathscr{U}} < \rho_u$, then $||x_1||_{\mathscr{X}} \le v ||u||_{\mathscr{U}} < \rho^*$ and $||x||_{\mathscr{X}} \le \Psi(||x_1||_{\mathscr{X}}) \le \Psi(v ||u||_{\mathscr{U}})$.

Proof of the theorem (1/2)

Given F, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]

Proof of the theorem (1/2)

- Given F, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
- Why this *F*? Proof of (iv)? →Sketch of proof

Proof of the theorem (1/2)

- Given F, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
- Why this *F*? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series

Let
$$\psi_1 = 1$$
 and $\psi_{n \geq 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{ML}} \sum_{\rho \in \mathbb{M}_n^k} \prod_{i=1}^k \psi_{\rho_i} \right].$
- Given F, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
- Why this F? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series

Let $\psi_1 = 1$ and $\psi_{n \ge 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{ML}} \sum_{p \in \mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right].$

Then $||x_1||_{\mathscr{X}} \leq \psi_1 ||x_1||_{\mathscr{X}}$ Let $n \geq 2$ and assume that $||x_j||_{\mathscr{X}} \leq \psi_j ||x_1||_{\mathscr{X}}^j$ for all $j \leq n-1$.

- Given F, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
- Why this F? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series

Let
$$\psi_1 = 1$$
 and $\psi_{n \ge 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{ML}} \sum_{p \in \mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right].$
Then $\|x_1\|_{\mathscr{X}} \le \psi_1 \|x_1\|_{\mathscr{X}}$

Let $n \ge 2$ and assume that $||x_j||_{\mathscr{X}} \le \psi_j ||x_1||_{\mathscr{X}}^j$ for all $j \le n-1$. We have

 $\|\boldsymbol{x}_n\|_{\mathscr{X}} \leq \gamma \|\boldsymbol{\chi}_n\|_{\mathscr{X}}$

- Given F, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
- Why this F? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series

Let
$$\psi_1 = 1$$
 and $\psi_{n\geq 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{ML}} \sum_{p \in \mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right].$

Let $n \ge 2$ and assume that $||x_j||_{\mathscr{X}} \le \psi_j ||x_1||_{\mathscr{X}}^j$ for all $j \le n-1$. We have

$$\|\boldsymbol{x}_{n}\|_{\mathscr{X}} \leq \gamma \|\boldsymbol{\chi}_{n}\|_{\mathscr{X}} \leq \gamma \sum_{k=2}^{\max(M,n)} \sum_{\boldsymbol{p} \in \mathbb{M}_{n}^{k}} \|\boldsymbol{A}_{k}(\boldsymbol{x}_{p_{1}},\ldots,\boldsymbol{x}_{p_{k}})\|_{\mathscr{X}}$$

- Given F, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
- Why this F? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series

Let
$$\psi_1 = 1$$
 and $\psi_{n\geq 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{ML}} \sum_{p \in \mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right].$

Let $n \ge 2$ and assume that $||x_j||_{\mathscr{X}} \le \psi_j ||x_1||_{\mathscr{X}}^j$ for all $j \le n-1$. We have

$$\begin{split} \|\boldsymbol{x}_{n}\|_{\mathscr{X}} &\leq \gamma \|\boldsymbol{\chi}_{n}\|_{\mathscr{X}} \leq \gamma \sum_{k=2}^{\max(M,n)} \sum_{\boldsymbol{p} \in \mathbb{M}_{n}^{k}} \|\boldsymbol{A}_{k}(\boldsymbol{x}_{p_{1}},\ldots,\boldsymbol{x}_{p_{k}})\|_{\mathscr{X}} \\ &\leq \gamma \sum_{k=2}^{\max(M,n)} \sum_{\boldsymbol{p} \in \mathbb{M}_{n}^{k}} \left[\|\boldsymbol{A}_{k}\|_{\mathscr{ML}} \prod_{i=1}^{k} \underbrace{\|\boldsymbol{x}_{p_{i}}\|_{\mathscr{X}}}_{i} \right] \end{split}$$

- Given F, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
- Why this F? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series

Let
$$\psi_1 = 1$$
 and $\psi_{n \ge 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{ML}} \sum_{p \in \mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right].$
Then $\|x_1\|_{\mathscr{X}} \le \psi_1 \|x_1\|_{\mathscr{X}}$

Let $n \ge 2$ and assume that $||x_j||_{\mathscr{X}} \le \psi_j ||x_1||_{\mathscr{X}}^j$ for all $j \le n-1$. We have

$$\begin{aligned} \|\boldsymbol{x}_{n}\|_{\mathscr{X}} \leq \gamma \|\boldsymbol{\chi}_{n}\|_{\mathscr{X}} \leq \gamma \sum_{k=2}^{\max(M,n)} \sum_{\boldsymbol{p}\in\mathbb{M}_{n}^{k}} \|\boldsymbol{A}_{k}(\boldsymbol{x}_{p_{1}},\ldots,\boldsymbol{x}_{p_{k}})\|_{\mathscr{X}} \\ \leq \gamma \sum_{k=2}^{\max(M,n)} \sum_{\boldsymbol{p}\in\mathbb{M}_{n}^{k}} \left[\|\boldsymbol{A}_{k}\|_{\mathscr{M}\mathscr{L}} \prod_{i=1}^{k} \underbrace{\|\boldsymbol{x}_{p_{i}}\|_{\mathscr{X}}}_{\leq \boldsymbol{\psi}_{p_{i}}\|\boldsymbol{x}_{1}\|_{\mathscr{X}}^{p_{i}}} \right] \end{aligned}$$

- Given F, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
- Why this F? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series

Let
$$\psi_1 = 1$$
 and $\psi_{n\geq 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{ML}} \sum_{p \in \mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right].$

Let $n \ge 2$ and assume that $||x_j||_{\mathscr{X}} \le \psi_j ||x_1||_{\mathscr{X}}^j$ for all $j \le n-1$. We have by induction

$$\begin{aligned} \|\boldsymbol{x}_{n}\|_{\mathscr{X}} \leq \gamma \|\boldsymbol{\chi}_{n}\|_{\mathscr{X}} \leq \gamma \sum_{k=2}^{\max(M,n)} \sum_{\boldsymbol{p}\in\mathbb{M}_{n}^{k}} \|\boldsymbol{A}_{k}(\boldsymbol{x}_{p_{1}},\ldots,\boldsymbol{x}_{p_{k}})\|_{\mathscr{X}} \\ \leq \gamma \sum_{k=2}^{\max(M,n)} \sum_{\boldsymbol{p}\in\mathbb{M}_{n}^{k}} \left[\|\boldsymbol{A}_{k}\|_{\mathscr{M}\mathscr{L}} \prod_{i=1}^{k} \underbrace{\|\boldsymbol{x}_{p_{i}}\|_{\mathscr{X}}}_{\leq \boldsymbol{\psi}_{p_{i}}\|\boldsymbol{x}_{1}\|_{\mathscr{X}}^{p_{i}}} \right] \leq \boldsymbol{\psi}_{n}\|\boldsymbol{x}_{1}\|_{\mathscr{X}}^{n} \end{aligned}$$

Given *F*, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
 Why this *F*? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series: $\forall n \ge 1$, $\|\boldsymbol{x}_n\|_{\mathscr{X}} \le \psi_n \|\boldsymbol{x}_1\|_{\mathscr{X}}^n$ with $\psi_1 = 1$ and $\psi_{n\ge 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{M}} \mathscr{L} \sum_{p \in \mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right]$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ - のへで 17/43

Rk: $\left\|\sum_{n=1}^{N} x_n\right\|_{\mathscr{X}} \leq \sum_{n=1}^{N} \left\|x_n\right\|_{\mathscr{X}} \leq \sum_{n=1}^{N} \psi_n \|x_1\|_{\mathscr{X}}^n$

Given *F*, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
 Why this *F*? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series: $\forall n \ge 1$, $\|\boldsymbol{x}_n\|_{\mathscr{X}} \le \psi_n \|\boldsymbol{x}_1\|_{\mathscr{X}}^n$ with $\psi_1 = 1$ and $\psi_{n\ge 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{M}} \mathscr{L} \sum_{p \in \mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right]$.

Rk:
$$\left\|\sum_{n=1}^{N} x_n\right\|_{\mathscr{X}} \leq \sum_{n=1}^{N} \left\|x_n\right\|_{\mathscr{X}} \leq \sum_{n=1}^{N} \psi_n \|x_1\|_{\mathscr{X}}^n$$

(Step 2) Functional equation

Introduce the generating function $\Psi(X) = \sum_{n=1}^{+\infty} \psi_n X^n$

Given *F*, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
 Why this *F*? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series: $\forall n \ge 1$, $\|\boldsymbol{x}_n\|_{\mathscr{X}} \le \psi_n \|\boldsymbol{x}_1\|_{\mathscr{X}}^n$ with $\psi_1 = 1$ and $\psi_{n\ge 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{ML}} \sum_{p \in \mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right]$.

Rk:
$$\left\|\sum_{n=1}^{N} x_n\right\|_{\mathscr{X}} \leq \sum_{n=1}^{N} \left\|x_n\right\|_{\mathscr{X}} \leq \sum_{n=1}^{N} \psi_n \|x_1\|_{\mathscr{X}}^n$$

(Step 2) Functional equation

Introduce the generating function $\Psi(X) = \sum_{n=1}^{+\infty} \psi_n X^n$ $\gamma Q(\Psi(X)) = \gamma \sum_{k=2}^{M} ||A_k||_{\mathscr{ML}} (\sum_{n=1}^{+\infty} \psi_n X^n)^k$

 Given *F*, (i-iii) stem from the singular inversion theorem. [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
 Why this *F*? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series: $\forall n \ge 1$, $\|\boldsymbol{x}_n\|_{\mathscr{X}} \le \psi_n \|\boldsymbol{x}_1\|_{\mathscr{X}}^n$ with $\psi_1 = 1$ and $\psi_{n\ge 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{M}\mathscr{L}} \sum_{p\in\mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right]$. **Rk:** $\|\sum_{n=1}^N x_n\|_{\mathscr{X}} \le \sum_{n=1}^N \|x_n\|_{\mathscr{X}} \le \sum_{n=1}^N \psi_n \|x_1\|_{\mathscr{X}}^n$

(Step 2) Functional equation

Introduce the generating function $\Psi(X) = \sum_{n=1}^{+\infty} \psi_n X^n$ $\gamma Q(\Psi(X)) = \gamma \sum_{k=2}^{M} ||A_k||_{\mathscr{M}\mathscr{L}} \left(\sum_{n=1}^{+\infty} \psi_n X^n \right)^k$ $= \sum_{n=2}^{+\infty} X^n \left(\gamma \sum_{k=2}^{\max(M,n)} \sum_{p \in \mathbb{M}_n^k} \left[||A_k||_{\mathscr{M}\mathscr{L}} \prod_{i=1}^k \psi_{p_i} \right] \right)$

Given *F*, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
 Why this *F*? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series: $\forall n \ge 1$, $\|\mathbf{x}_n\|_{\mathscr{X}} \le \psi_n \|\mathbf{x}_1\|_{\mathscr{X}}^n$ with $\psi_1 = 1$ and $\psi_{n\ge 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{M}\mathscr{L}} \sum_{p\in\mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right]$. **Rk:** $\|\sum_{n=1}^N x_n\|_{\mathscr{X}} \le \sum_{n=1}^N \|x_n\|_{\mathscr{X}} \le \sum_{n=1}^N \psi_n \|x_1\|_{\mathscr{X}}^n$

(Step 2) Functional equation

Introduce the generating function $\Psi(X) = \sum_{n=1}^{+\infty} \psi_n X^n$ $\gamma Q(\Psi(X)) = \gamma \sum_{k=2}^{M} ||A_k||_{\mathscr{ML}} (\sum_{n=1}^{+\infty} \psi_n X^n)^k$ $= \sum_{n=2}^{+\infty} X^n \Big(\underbrace{\gamma \sum_{k=2}^{\max(M,n)} \sum_{p \in \mathbb{M}_n^k} [||A_k||_{\mathscr{ML}} \prod_{i=1}^k \psi_{p_i}]}_{=\psi_n} \Big)$

Given *F*, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
 Why this *F*? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series: $\forall n \ge 1$, $\|\boldsymbol{x}_n\|_{\mathscr{X}} \le \psi_n \|\boldsymbol{x}_1\|_{\mathscr{X}}^n$ with $\psi_1 = 1$ and $\psi_{n\ge 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|\boldsymbol{A}_k\|_{\mathscr{M}\mathscr{L}} \sum_{p\in\mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right]$.

Rk:
$$\left\|\sum_{n=1}^{N} x_n\right\|_{\mathscr{X}} \leq \sum_{n=1}^{N} \left\|x_n\right\|_{\mathscr{X}} \leq \sum_{n=1}^{N} \psi_n \|x_1\|_{\mathscr{X}}^n$$

(Step 2) Functional equation

Introduce the generating function $\Psi(X) = \sum_{n=1}^{+\infty} \psi_n X^n$ $\gamma Q(\Psi(X)) = \gamma \sum_{k=2}^{M} ||A_k||_{\mathscr{ML}} (\sum_{n=1}^{+\infty} \psi_n X^n)^k$ $= \sum_{n=2}^{+\infty} X^n \Big(\gamma \sum_{k=2}^{\max(M,n)} \sum_{p \in \mathbb{M}_n^k} \Big[||A_k||_{\mathscr{ML}} \prod_{i=1}^k \psi_{p_i} \Big] \Big)$ $= \Psi(X) - X = \psi_n$

Given *F*, (i-iii) stem from the singular inversion theorem.
 [P. Flajolet, R. Sedgewick. Analytic combinatorics, 2009]
 Why this *F*? Proof of (iv)? →Sketch of proof

(Step 1) Majorizing series: $\forall n \ge 1$, $\|\boldsymbol{x}_n\|_{\mathscr{X}} \le \psi_n \|\boldsymbol{x}_1\|_{\mathscr{X}}^n$ with $\psi_1 = 1$ and $\psi_{n\ge 2} = \gamma \sum_{k=2}^{\max(M,n)} \left[\|A_k\|_{\mathscr{M}\mathscr{L}} \sum_{p\in\mathbb{M}_n^k} \prod_{i=1}^k \psi_{p_i} \right]$.

Rk:
$$\left\|\sum_{n=1}^{N} x_n\right\|_{\mathscr{X}} \leq \sum_{n=1}^{N} \left\|x_n\right\|_{\mathscr{X}} \leq \sum_{n=1}^{N} \psi_n \|x_1\|_{\mathscr{X}}^n$$

(Step 2) Functional equation

Introduce the generating function $\Psi(X) = \sum_{n=1}^{+\infty} \psi_n X^n$ $\gamma Q(\Psi(X)) = \gamma \sum_{k=2}^{M} ||A_k||_{\mathscr{ML}} (\sum_{n=1}^{+\infty} \psi_n X^n)^k$ $= \sum_{n=2}^{+\infty} X^n \Big(\gamma \sum_{k=2}^{\max(M,n)} \sum_{p \in \mathbb{M}_n^k} \Big[||A_k||_{\mathscr{ML}} \prod_{i=1}^k \psi_{p_i} \Big] \Big)$ $= \Psi(X) - X = \psi_n$

leading to $\Psi(X) = X F(\Psi(X))$ (\rightarrow use the singular inversion theorem) \Box

Truncation error bound

Theorem 2 (truncation error bound)

Introduce the truncated series $T_N x = \sum_{n=1}^N x_n$ and $T_N \Psi(X) = \sum_{n=1}^N \psi_n X^n$. If $||x_1||_{\mathscr{X}} < \rho^*$ (or $||u||_{\mathscr{U}} < \rho_u$), then $||x - T_N x||_{\mathscr{X}} \le [\Psi - T_N \Psi] (||x_1||_{\mathscr{X}})$ (or $\le [\Psi - T_N \Psi] (v ||u||_{\mathscr{U}})$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで 18/43

The proof stems from step 1

Example ($\dot{x} = -ax + u + \varepsilon x^3$, $a > 0, \varepsilon > 0$)

$$\begin{array}{l} A = -a, B = 1, A_3(x_1, x_2, x_3) = \varepsilon x_1 x_2 x_3 \quad \text{and} \ \|A_3\|_{\mathscr{ML}} = \varepsilon \\ S(t) = h_1(t) = e^{-at} \mathbf{1}_{\mathbb{R}_+}(t), \quad \alpha = -a < 0 \quad \text{and} \ \beta = 1 \end{array}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ 19/43

$$\gamma = \int_{0}^{+\infty} e^{-at} dt = \frac{1}{a} (=v)$$

$$F(X) = \frac{X}{X - \gamma ||A_3|| X^3} = \frac{1}{1 - (\varepsilon/a) X^2}$$

Example ($\dot{x} = -ax + u + \varepsilon x^3$, $a > 0, \varepsilon > 0$)

$$\begin{array}{l} A = -a, B = 1, A_3(x_1, x_2, x_3) = \varepsilon x_1 x_2 x_3 \quad \text{and} \ \|A_3\|_{\mathscr{ML}} = \varepsilon \\ S(t) = h_1(t) = e^{-at} \mathbb{1}_{\mathbb{R}_+}(t), \quad \alpha = -a < 0 \quad \text{and} \ \beta = 1 \end{array}$$

$$\gamma = \int_0^{+\infty} e^{-at} dt = \frac{1}{a} (=v)$$

$$F(X) = \frac{X}{X - \gamma ||A_3|| X^3} = \frac{1}{1 - (\varepsilon/a) X^2}$$

(i)
$$\sigma > 0$$
 s.t. $F(\sigma) - \sigma F'(\sigma) = 0$: $1 - \frac{3\varepsilon}{a}\sigma^2 = 0$ and $\sigma = \sqrt{\frac{a}{3\varepsilon}}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ 19/43

Example ($\dot{x} = -ax + u + \varepsilon x^3$, $a > 0, \varepsilon > 0$)

$$\begin{array}{l} A = -a, B = 1, A_3(x_1, x_2, x_3) = \varepsilon x_1 x_2 x_3 \quad \text{and} \ \|A_3\|_{\mathscr{ML}} = \varepsilon \\ S(t) = h_1(t) = e^{-at} \mathbb{1}_{\mathbb{R}_+}(t), \quad \alpha = -a < 0 \quad \text{and} \ \beta = 1 \end{array}$$

$$\gamma = \int_{0}^{+\infty} e^{-at} dt = \frac{1}{a} \ (=v)$$

$$F(X) = \frac{X}{X - \gamma ||A_{3}|| X^{3}} = \frac{1}{1 - (\epsilon/a)X^{2}}$$

(i)
$$\sigma > 0$$
 s.t. $F(\sigma) - \sigma F'(\sigma) = 0$: $1 - \frac{3\varepsilon}{a}\sigma^2 = 0$ and $\sigma = \sqrt{\frac{a}{3\varepsilon}}$

(iii)
$$\rho^* = \frac{\sigma}{F(\sigma)} > 0$$
: $\rho^* = \underbrace{(1 - \frac{\varepsilon}{a}\sigma^2)}_{2/3}\sigma$ $\rho^* = \frac{2}{3}\sqrt{\frac{a}{3\varepsilon}},$
and $\rho_u = \frac{\rho^*}{v} = \frac{2}{3}\sqrt{\frac{a^3}{3\varepsilon}}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ 19/43

Example $(\dot{x} = -ax + u + \varepsilon x^3, a > 0, \varepsilon > 0)$

$$\begin{array}{l} A = -a, B = 1, A_3(x_1, x_2, x_3) = \varepsilon x_1 x_2 x_3 \quad \text{and} \ \|A_3\|_{\mathscr{ML}} = \varepsilon \\ S(t) = h_1(t) = e^{-at} \mathbb{1}_{\mathbb{R}_+}(t), \quad \alpha = -a < 0 \quad \text{and} \ \beta = 1 \end{array}$$

$$\gamma = \int_{0}^{1} e^{-at} dt = \frac{1}{a} (=v)$$

$$F(X) = \frac{X}{X - \gamma ||A_{3}|| X^{3}} = \frac{1}{1 - (\varepsilon/a)X^{2}}$$

a 1

(i)
$$\sigma > 0$$
 s.t. $F(\sigma) - \sigma F'(\sigma) = 0$: $1 - \frac{3\varepsilon}{a}\sigma^2 = 0$ and $\sigma = \sqrt{\frac{a}{3\varepsilon}}$
(ii) $\Psi(z) = z F(\Psi(z))$ analytic at $z = 0$: $\Psi(z) - \frac{\varepsilon}{a}\Psi(z)^3 = z$
(iii) $\rho^* = \frac{\sigma}{F(\sigma)} > 0$: $\rho^* = (1 - \frac{\varepsilon}{a}\sigma^2)\sigma$ $\rho^* = \frac{2}{3}\sqrt{\frac{a}{3\varepsilon}}$,

(ii) $\Psi(z) = z F(\Psi(z))$ analytic at z = 0:

(iii)
$$\rho^* = \frac{\sigma}{F(\sigma)} > 0: \rho^* = \underbrace{(1 - \frac{\varepsilon}{a}\sigma^2)}_{2/3}\sigma$$

and
$$\rho_u = \frac{\rho^*}{v} = \frac{2}{3}\sqrt{\frac{a^3}{3\varepsilon}}$$

Example ($\dot{x} = -ax + u + \varepsilon x^3$, $a > 0, \varepsilon > 0$)

$$\begin{array}{l} A = -a, B = 1, A_3(x_1, x_2, x_3) = \varepsilon x_1 x_2 x_3 \quad \text{and} \ \|A_3\|_{\mathscr{ML}} = \varepsilon \\ S(t) = h_1(t) = e^{-at} \mathbf{1}_{\mathbb{R}_+}(t), \quad \alpha = -a < 0 \quad \text{and} \ \beta = 1 \end{array}$$

$$\gamma = \int_{0}^{+\infty} e^{-at} dt = \frac{1}{a} (=v)$$

$$F(X) = \frac{X}{X - \gamma ||A_3||X^3} = \frac{1}{1 - (\epsilon/a)X^2}$$

Remark

When there is no closed-form solution for γ , σ , ρ^* (...), equations of steps (i-iii) can be numerically solved.

◆□ → ◆□ → ◆ □ → ▲ □ → ▲ □ → ◆ □ → ◆ □ → ▲ □ → ■ □

Numerical simulations $(a = 0.65 \text{ and } \varepsilon \text{ s.t. } \rho_u = 1)$

Square input: u(t) = e on [0, 25) and u(t) = -e on [25, 50), etc.

Numerical simulations

 $(a = 0.65 \text{ and } \varepsilon \text{ s.t. } \rho_u = 1)$

Square input: u(t) = e on [0, 25) and u(t) = -e on [25, 50), etc.

- $e < \rho^*$: the VS converges to the trajectory of the NL system
- $e > p^*$: the VS becomes divergent and the trajectory of the nonlinear system gets out of the domain of attraction of 0.

Numerical simulations

 $(a = 0.65 \text{ and } \varepsilon \text{ s.t. } \rho_u = 1)$

Square input: u(t) = e on [0, 25) and u(t) = -e on [25, 50), etc.

- $e < \rho^{\star}$: the VS converges to the trajectory of the NL system
- $e > \rho^*$: the VS becomes divergent and the trajectory of the nonlinear system gets out of the domain of attraction of 0.

In this example (not in general!): (a) ρ^* and ρ_u are tight bounds; (b) the convergence domain coincides with the domain of attraction of 0.

Generalizations of theorems 1 and 2

[IEEE-TAC 2011]

(finite-dim. systems)

• Affine systems: $\dot{x} = Ax + Bu + P(x) + \text{Bilin}(Q(x), u)$

with
$$P(x) = \sum_{m=2}^{+\infty} A_m(x, \dots, x)$$

and $Q(x) = \sum_{m=1}^{+\infty} B_m(x, \dots, x)$

 𝔐, 𝔅: Weighted-L[∞] spaces (exponentially-damped input/output results)

[Automatica 2014]

(infinite-dim. systems)

- \mathbb{X} , U: Banach spaces on the field \mathbb{R}
- x = L(x, u) + P(x) + Bilin(Q(x), u) where
 x = L(x, u) defines a distributed or boundary control linear system
- Non zero initial conditions

Plan

- 2 Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel
- Exercices et applications en audio-acoustique

5 Convergence

- Extension en dimension infinie et application
 - Noyaux de Green-Volterra : principe et exemple
 - Bonus: nonlinear beam with convergence results [ICSV-2019]

Outline

- 2 Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel
- Exercices et applications en audio-acoustique

5 Convergence

6 Extension en dimension infinie et application

- Noyaux de Green-Volterra : principe et exemple
- Bonus: nonlinear beam with convergence results [ICSV-2019]

Recall (§2): Volterra kernels of time-Varying systems

A definition is also available for time-varying systems:

$$y(t) = \sum_{n=1}^{\infty} \int_{\mathbb{R}^n} g_n(t, \theta_1, ..., \theta_n) u(\theta_1) ... u(\theta_n) d\theta_1 ... d\theta_n$$

Time-Invariant (TI) case and link with kernels h_n

TI case:
$$y(t) = \sum_{n=1}^{+\infty} \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t-\tau_1) ... u(t-\tau_n) d\tau_1 ... d\tau_n$$

Kernels g_n of a TI system are such that $(\theta_k = t - \tau_k)$

$$g_n(t,t-\tau_1,\ldots,t-\tau_n)=h_n(\tau_1,\ldots,\tau_n)$$

does not depend on t

Causal kernels g_n

$$\exists k \text{ s.t. } \theta_k > t \Rightarrow g_n(t, \theta_1, ..., \theta_k, ..., \theta_n) = 0$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 24/43

Green-Volterra kernels

Basic idea: space-time problem \rightarrow space-time kernels.

Definition
$$\underbrace{u(r,t)}_{\{g_n\}} \underbrace{y(r,t)}_{(r,t)}$$
 $(r,t) \in \Omega \times \mathbb{R}$
A system is defined by the Green-Volterra series $\{g_n\}_{n \ge 1}$ if
 $u(r,t) = \sum_{n=1}^{+\infty} \int_{(\Omega \times \mathbb{R})^n} g_n(r,t;\rho_1,\theta_1,\ldots,\rho_n,\theta_n) u(\rho_1,\theta_1)\ldots u(\rho_n,\theta_n) \times d\rho_1 d\theta_1 \ldots d\rho_n d\theta_n$

Time-invariant kernels and Transfer kernels

• Time-invariance : $\exists h_n$ s.t. $\forall r, t$ and ρ_1, \ldots, ρ_n and τ_1, \ldots, τ_n ,

$$g_n(r,t;\rho_1,t-\tau_1,\ldots,\rho_n,t-\tau_n)=h_n(r;\rho_1,\tau_1,\ldots,\rho_n,\tau_n)$$

• Transfer kernels = Laplace transform of h_n w.r.t. to τ_1, \ldots, τ_n

$$=$$
 $H_n(r; \rho_1, \mathbf{s_1}, \ldots, \rho_n, \mathbf{s_n})$

 \rightarrow Interconnection laws can be generalized

A damped Kirchhoff-Carrier String [Roze,Hélie,JSV2014]

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A damped Kirchhoff-Carrier String [Roze,Hélie,JSV2014]

Dimensionless model

$$(\Omega =]0, 1[, \mathbb{T} = \mathbb{R}_+)$$

$$\underbrace{\partial_t^2 w + 2\alpha \partial_t w - \partial_x^2 w}_{L_{x,t}[w]} + \underbrace{\varepsilon \left[\int_0^1 (\partial_x w)^2 dx \right] \partial_x^2 w}_{-A_3(w,w,w)} = f \quad \text{in } \Omega \times \mathbb{T}$$

(BC: Dirichlet ; IC: zero ; damping: $\alpha > 0$; NL: $\varepsilon > 0$)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Higher order Green-Volterra kernels

(details in the paper)

$$H_n(\boldsymbol{x};\boldsymbol{\xi}_1,\boldsymbol{s}_1,\ldots,\boldsymbol{\xi}_n,\boldsymbol{s}_n) = \int_{\Omega} H_1(\boldsymbol{x};\boldsymbol{\zeta},\boldsymbol{s}_1+\cdots+\boldsymbol{s}_n)$$

$$\times \sum_{\boldsymbol{p}\in \mathbb{M}_n^3} A_{\boldsymbol{\zeta}}^3 \Big(H_{\boldsymbol{p}_1}(\boldsymbol{\zeta};\boldsymbol{\xi}_1,\boldsymbol{s}_1,\ldots), H_{\boldsymbol{p}_2}(\boldsymbol{\zeta};\boldsymbol{\xi}_{\boldsymbol{p}_1+1},\boldsymbol{s}_{\boldsymbol{p}_1+1},\ldots), H_{\boldsymbol{p}_3}(\boldsymbol{\zeta};\ldots) \Big) d\boldsymbol{\zeta}$$

Decomposition on eigenfunctions e_k + Order reduction

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

- 2 Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel
- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application
 Noyaux de Green-Volterra : principe et exemple
 - Bonus: nonlinear beam with convergence results [ICSV-2019]

Simulation of a damped nonlinear beam

based on modal decomposition and Volterra series

Thomas Hélie, CNRS

thomas.helie@ircam.fr

Béatrice Laroche, INRA

beatrice.laroche@inra.fr

STMS-lab, IRCAM-CNRS-SU, Paris, France

MaIAGE, INRA, Jouy-en-Josas, France

26th International Congress on Sound and Vibration 10 July, 2019 Montéal, Canada

<ロ> (日) (日) (王) (王) (王) (1/17

Euler-Bernoulli Model

Damped nonlinear pinned beam excited by a distributed force with:

- (H1) Euler-Bernoulli kinematics (any cross-section before deformation remains straight after deformation)
- (H2) Viscous (a) and structural (b) damping phenomena
- (H3) Von Karman's assumptions (coupling between axial and bending movements → nonlinearity)

Dimensionless PDE: deflection waves w(z, t) $(z \in \Omega =]0, 1[, t \in \mathbb{T} = \mathbb{R}_+)$

$$\partial_t^2 \mathbf{w} + 2\left(a + b\partial_x^4\right) \partial_t w + \partial_x^4 \mathbf{w} - \eta \left(\int_0^1 (\partial_z \mathbf{w})^2 \, \mathrm{d}z\right) \ \partial_z^2 \mathbf{w} = f \quad \text{(distributed force)}$$

Conditions and coefficients

-Pinned beam: w(z, t) = 0 (fixed) and $\partial_z^2 w(z, t) = 0$ (no momentum) at $z \in \{0, 1\}$ -Zero initial conditions: w(z, t = 0) = 0 and $\partial_t w(z, t = 0) = 0$ -Damping: a > 0, b > 0-Nonlinear coupling: $\eta > 0$

Functional setting
$$\begin{aligned} \partial_t^2 w + \partial_z^4 w + 2(a+b\partial_z^4) \partial_t w - \eta \left(\int_0^1 (\partial_z w)^2 dz \right) \partial_z^2 w &= f \end{aligned} + \text{BC+IC} \end{aligned}$$
State-Space Formulation for $u \in \mathscr{U}$ with $\mathbb{U} = \mathbb{H} := L^2(0,1)$

$$\begin{aligned} \dot{x} &= Ax + Bu + A_3(x,x,x) \end{aligned} \text{ with } x = [w, \dot{w}]^T \text{ and } u = f \end{aligned}$$

$$Ax = \begin{bmatrix} 0 & l \\ -\Delta^2 & -2(al+b\Delta^2) \end{bmatrix} x, Bu = \begin{bmatrix} 0 \\ u \end{bmatrix}, A_3(a,b,c) = \begin{bmatrix} 0 \\ -\eta \left(\int_0^1 a_1'(z)b_1'(z)dz \right) c_1'' \end{aligned}$$

Bi-laplacian and laplacian op.: domains and properties (unbounded in \mathbb{H}) [Curtain, Jacob, Zwart, ...]

$$Δ^2$$
: $D(Δ^2) = \{w ∈ H^4(0,1) \text{ s.t. } w(0) = w(1) = 0, w''(0) = w''(1) = 0\}$
 $Δ^2$ is closed, densely defined, self-adjoint, positive on \mathbb{H}

 $\Rightarrow \exists$ uniquely defined positive square root ($-\Delta$)

$$\Delta: D(\Delta) = \{ w \in H^2(0,1) \text{ s.t. } w(0) = w(1) = 0 \}$$

 $\mathbb{H}^{\frac{1}{2}} = D(\Delta)$ endowed with norm $\|\cdot\| = \|\Delta \cdot\|_{\mathbb{H}}$ is a Hilbert space

Functional setting $\left| \partial_t^2 w + \partial_z^4 w + 2(a+b\partial_z^4) \partial_t w - \eta \left(\int_0^1 (\partial_z w)^2 dz \right) \partial_z^2 w = f \right| + \text{BC+IC}$ State-Space Formulation for $u \in \mathcal{U}$ with $\mathbb{U} = \mathbb{H} := L^2(0, 1)$ $\dot{x} = Ax + Bu + A_3(x, x, x)$ with $x = [w, \dot{w}]^T$ and u = f $Ax = \begin{bmatrix} 0 & I \\ -\Delta^2 & -2(aI+b\Delta^2) \end{bmatrix} x, Bu = \begin{bmatrix} 0 \\ u \end{bmatrix}, A_3(a,b,c) = \begin{bmatrix} 0 \\ -\eta \Big(\int_a^1 a'_1(z) b'_1(z) dz \Big) c''_1 \end{bmatrix}$ Well-posedness: linearized system [Curtain, Jacob, Zwart, ...] • $\mathbb{U} = \mathbb{H}$ and $\mathbb{X} = \mathbb{H}^{\frac{1}{2}} \times \mathbb{H}$ with norm $\|x\|_{\mathbb{X}} = \left(\|x_1\|_{\mathbb{H}^{\frac{1}{2}}}^2 + \|x_2\|_{\mathbb{H}}^2\right)^{\frac{1}{2}}$ • A on $D(A) = \{(u, v) \in \mathbb{H}^{\frac{1}{2}} \times \mathbb{H}^{\frac{1}{2}}, 2(a+b\partial_z^4)v + \partial_z^4u \in \mathbb{H}\}$ generates a C^0 contraction semigroup on \mathbb{X} $\Rightarrow \gamma = ||S|| < \infty$ • $B \in \mathscr{L}(\mathbb{U},\mathbb{X})$ and $||B||_{\mathscr{L}} = 1$.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ Ξ - りへで 31/43
Functional setting $\left| \partial_t^2 w + \partial_z^4 w + 2(a+b\partial_z^4) \partial_t w - \eta \left(\int_0^1 (\partial_z w)^2 dz \right) \partial_z^2 w = f \right| + \text{BC+IC}$ State-Space Formulation for $u \in \mathcal{U}$ with $\mathbb{U} = \mathbb{H} := L^2(0, 1)$ $\dot{x} = Ax + Bu + A_3(x, x, x)$ with $x = [w, \dot{w}]^T$ and u = f $Ax = \begin{bmatrix} 0 & I \\ -\Delta^2 & -2(aI+b\Delta^2) \end{bmatrix} x, Bu = \begin{bmatrix} 0 \\ u \end{bmatrix}, A_3(a,b,c) = \begin{bmatrix} 0 \\ -\eta \Big(\int_a^1 a'_1(z) b'_1(z) dz \Big) c''_1 \end{bmatrix}$ Well-posedness: linearized system [Curtain, Jacob, Zwart, ...] • $\mathbb{U} = \mathbb{H} \text{ and } \mathbb{X} = \mathbb{H}^{\frac{1}{2}} \times \mathbb{H} \text{ with norm } \|x\|_{\mathbb{X}} = \left(\|x_1\|_{\mathbb{H}^{\frac{1}{2}}}^2 + \|x_2\|_{\mathbb{H}}^2\right)^{\frac{1}{2}}$ • A on $D(A) = \{(u, v) \in \mathbb{H}^{\frac{1}{2}} \times \mathbb{H}^{\frac{1}{2}}, 2(a+b\partial_z^4)v + \partial_z^4u \in \mathbb{H}\}$ generates a C^{0} contraction semigroup on \mathbb{X} $\Rightarrow \gamma = ||S|| < \infty$ • $B \in \mathscr{L}(\mathbb{U},\mathbb{X})$ and $||B||_{\mathscr{L}} = 1$. Well-posedness: nonlinear system $\|A_3\|_{\mathscr{ML}_3(\mathbb{X},\mathbb{X},\mathbb{X})} < a_3 := \eta/(3\sqrt{10})$

 $\Rightarrow \exists
ho^{\star},
ho_{u} > 0$ (Validity domain $\|u\| <
ho_{u}$)

Modal decomposition (linearized model: $\partial_t^2 w + 2(a + b\partial_z^4) \partial_t w + \partial_z^4 w = f$)

Basis of $L^2(0,1)$: $\{e_m\}_{m\geq 1}$ with $e_m(z) = \sqrt{2}\sin(k_m z)$ for $k_m = m\pi$

Eigenfunctions: $\partial_{z}^{4}e_{m} = k_{m}^{4}e_{m}$ and BC satisfied Normed and orthogonal: $||e_{m}||_{L^{2}} = 1$ and $\langle e_{m}, e_{n} \rangle_{L^{2}} = 0$ if $m \neq n$

Model order reduction on M modes: $E = [e_1, \ldots, e_M]^T$ Excitation: $f(z, t) = E(z)^T F(t)$ with $F = [f_1, \ldots, f_M]^T$ Decomposition (exact): $w(z, t) = E(z)^T W(t)$ with $W = [w_1, \ldots, w_M]^T$ Dynamics of modes $(1 \le m \le M)$: $\ddot{w}_m + 2(a + bk_m^4) \dot{w}_m + k_m^4 w_m = f_m$

State-space representation

(dimension = 2M)

Input $\boldsymbol{u} = \boldsymbol{F}$, state $\boldsymbol{x} = [\boldsymbol{W}^T, \dot{\boldsymbol{W}}^T]^T$

Dynamic equation:

 $\dot{x}(t) = Ax(t) + Bu(t)$ $x(0) = 0_{2M \times 1}.$

$$A = \begin{pmatrix} 0_{M \times M} & I_M \\ -K^4 & -2(a I_M + b K^4) \end{pmatrix}, \quad B = \begin{pmatrix} 0_{M \times M} \\ I_M \end{pmatrix} \text{ and } K = \text{diag}(k_1, \dots, k_M)$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ◆ ○ 32/43

Jonlinear problem
$$(\partial_t^2 w + 2(a + b\partial_z^4)\partial_t w + \partial_z^4 w - \eta (\int_0^1 (\partial_z w)^2 dz) \partial_z^2 w = f)$$

Property: the nonlinear operator preserves the co-linearity of functions e_m

$$\boldsymbol{w}(\boldsymbol{z},\boldsymbol{t}) = \boldsymbol{E}(\boldsymbol{z})^{\mathsf{T}} \boldsymbol{W}(\boldsymbol{t}) \Rightarrow -\eta \left(\int_{0}^{1} \left(\partial_{\boldsymbol{z}} \boldsymbol{w} \right)^{2} \mathrm{d}\boldsymbol{z} \right) \partial_{\boldsymbol{z}}^{2} \boldsymbol{w} = \eta (\boldsymbol{W}^{\mathsf{T}} \boldsymbol{K}^{2} \boldsymbol{W}) \boldsymbol{K}^{2} \boldsymbol{W}$$

Exact reduced order state-space representation

N

$$\dot{x}(t) = Ax(t) + Bu(t) + \underbrace{A_3(x(t), x(t), x(t))}_{\text{multi-linear op.}} \text{ and } x(0) = 0_{2M \times 1},$$

$$u_3(a, b, c) = \eta \left(a^T \begin{bmatrix} K^2 & 0_{M \times M} \\ 0_{M \times M} & 0_{M \times M} \end{bmatrix} b \right) \begin{bmatrix} 0_{M \times M} & 0_{M \times M} \\ -K^2 & 0_{M \times M} \end{bmatrix} c$$

$$\begin{array}{|c|c|c|c|c|c|} \hline A_3 \text{ is bounded} & (\|A_3\| = \sup_{\|x_1\|_X = \dots = \|x_3\|_X = 1} \|A_3(x_1, x_2, x_3\|_X) \\ & \|A_3\| \leq \frac{\eta}{2\sqrt{10}} \\ & (\|A_3\| < \frac{\eta}{$$

Solution as a series expansion with respect to input u (Volterra series) Problem: Solve $\dot{x}(t) = Ax(t) + Bu(t) + A_3(x(t), x(t), x(t)); x(0) = 0$ Idea: (1) Mark u by $\varepsilon > 0$ ($u \to \varepsilon u$); (2) Expand the solution x w.r.t. ε $x(t) = \sum_{m=1}^{\infty} \varepsilon^m x_m(t)$ (+ inject + isolate each order ε^m) $x_1 = x_{\text{lin}}$: solution of the linearized problem (order in ε^1) $x_1(t) = \int^t S(t-\tau) \boldsymbol{B} \boldsymbol{u}(\tau) d\tau, \text{ with } S(t) = \exp(\boldsymbol{A} t) \mathbf{1}_{t>0}.$ $x_m \ (m \ge 2)$: homogeneous order m (order in ε^m) $x_m(t) = \int_0^t S(t-\tau) \chi_m(\tau) \,\mathrm{d}\tau$ with $\chi_m(\tau) = \sum A_3(x_{p_1}(\tau), x_{p_2}(\tau), x_{p_3}(\tau))$ $p_1 + p_2 + p_3 = m$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ⑦ Q ○ 35/43

◆□ → ◆□ → ◆ 三 → ▲ 三 · · ○ へ ○ 37/43

Configuration 1: 1 mode (Duffing osc.) & excitation=pulse $u(t) = u_0 \mathbf{1}_{[0,T]}(t)$

Parameters: $\rho = 1$, $a = \pi^2$, b = 0 (critical regime), T = 3s

Convergence tests: $||x_1||_{\mathcal{X}} \in \{0.8; 1; 1.2; 2\}$

Reference trajectory: solver for stiff ODEs & high sampling rate (ode15s.m)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ 39/43

Conclusion

Contributions: pros

- Simulation of a nonlinear model of a beam
- Regular perturbation approach (Volterra series expansion)
- Modal decomposition & set of "linear systems + static nonlinearities"
- Convergence domain and truncation error bound are characterized
- Fast convergence inside the domain: (m=1,3,5,7 are sufficient)
- → Capture distortions for any –even complex– signal shape

Contributions: cons = outside the convergence domain

- (Characterized but) limited validity w.r.t. amplitude
- Increasing secular modes appear
- \rightarrow do not correctly capture frequency modulations

Further work

- Propose extensions to represent such modulations
- \rightarrow Adapted perturbation method (inspired from multiple scales ?)

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ へ ○ 41/43

<ロ> (日) (日) (王) (王) (王) (1/17

- 2 Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 42/43

- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

General conclusion

Volterra series are used to represent, analyze, control and simulate some Input/Output systems which include distortions

In this course

- Derivation of the kernels of a system (ODE or PDE)
- Kernels of an inverse system (open-loop) and a closed-loop system (feedback)
- Audio applications and simulations
- Computable convergence radius and error bound

Other topic related to control issues: identification

- Hammerstein models: method based on a log-sweep [Farina,AES,2000], [Novak et al.: IEEE-TIM, 2010], [Rébillat et al.: JSV, 2011]
- Separation of orders: see e.g. Boyd (based on amplitude) and Bouvier (+phase): https://medias.ircam.fr/x5662ab
- Group of Joannes and Maarten Schoukens (Belgium)